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Abstract 
V

This paper describes an efficient Monte Carlo sampling plan

for estimating the distribution of maximum flow in a directed

network whose arcs have random capacities. Such a network can be

used to represent a multi-state system whose multi-state

components are subject to deterioration in capacity by random

amounts at random points in time. The proposed sampling plan

uses an easily computed a priori upper bound on the complementary

distribution function to obtain an unbiased point estimator with **-.

smaller variance than crude Monte Carlo sampling allows.

The paper also describes procedures for interval estimation and

for assessing when the sampling experiment has achieved a

specified accuracy. To facilitate sampling, the paper presents

a characterization of deterioration based on cumulative

processes, leading to the treatment of arc capacities as being

multinormally distributed. A technique is described for checking

the appropriateness of this model with regard to lower and upper

bounds on capacity. A procedure is also described for deriving a

confidence interval on the measure used to assess variance

* reduction. An example illustrates the sampling plan and a concise

summary gives all steps needed to implement the plan.

0
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Introduction

- -.. =

This paper describes a method for estimating the

complementary distribution function of maximum flow in a

multi-state reliability system whose components have capacities

that decrease randomly through time and for which maximum flow

characterizes system performance. River systems with

accumulating silt deposits and distributed manufacturing systems

whose individual processing units deterioriate through time

provide two examples of such multi-state systems. Although a

considerable literature has developed on the reliability of

multi-state systems with multi-state components that exhibit

random deterioration in performance, this literature mostly %

concentrates on characterizing properties of performance measures

induced by the inherent features of broad classes of multi-state

systems. For example, see Barlow and Wu (1978), Baxter and Kim

(1984), Block and Savits (1984) and Mak (1985). A considerably

more modest literature exists for the equally important topic of

computing multi-state performance measures. For example, see

Butler (1982), Hudson and Kaper (1985) and Kulkarni and Adlakha .

(1 985)

The present paper is a contribution to this computational

literature. Specifically, it characterizes system performance by

the concept of maximum flow and describes a Monte Carlo sampling

plan for estimating the complementary distribution of maximum

flow with considerably better statistical accuracy than crude

Monte Carlo sampling would allow for the same cost. For

. . .
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convenience of exposition, we use the nomenclature of network

analysis to characterize a system. Although the emphasis

throughout this paper is on system reliability, the methods

described here clearly apply more generally to the considerably

broader class of maximum flow problems with capacities subject to

random variation.

Let G = (V,E,s,t) denote a directed network with node set

V, arc set E - {I,...,n}, source node s and sink node t

s,tCV. At time T>O, arcs which represent the components of the

system have capacities BI(T), ... ,Bn(T). The capacity of each arc

is subject to deterioration so that Bi(T) a BI(T+A) A>O 1<i~n.

The times at which the deteriorations occur are random, as are

the magnitudes of the incremental deteriorations themselves. Let

r denote the set of all minimal s-t cutsets of G and define

the capacity of cutset C at time x as

Z( x,C ) B B ( T) c c r.-" i"

iC 1"""

If capacities were deterministic rather than random, then a

measure of system status for each time I would be

A(T) = min Z(T,C). (1)

As is well known from the max-flow min-cut theorem of Ford and

Fulkerson (1956), A(i) is the maximum possible flow from source

node s to sink node t at time r. Then the function {A(-) -r>}-

• -. ' ..... "-" -.-.".i.-. i- -.-, ...-, ,', ...-. .-.. - .-. ..- - -,-, .- .. .- -" .1 1- .-.
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shows the pattern of deterioration in performance in G as time

*evolves. .,.%.

When capacities are random, (1) no longer provides an

adequate measure of system performance since IAW) -rOj is now

a stochastic process. Then for fixed i-O interest focuses on

L(x,-r) = pr[A(tr)>x] xaO. (2)

Also, for fixed x-O interest may focus on the first passage time

= min[z: A(z) x].
x

for which

pr(t >t) = L(x,). (3)
x

Then for each T 0 {L(x, ), x.O} gives the complementary

distribution function of maximum flow and for each xaO {L(xr),

* >01 gives the first passage time complementary distribution

function.

Other measures of system performance also are of interest.

For example,
0

L(x,C,t) = pr[Z(- ,C) = A(-) and A(t)>x] (4)

denotes the probability that C is the critical minimal s-t

cutset and that the maximum flow exceeds x at time T. Then

L(C,TI x) = L(xC,())/Lx,.) (5)

= probability that C is the critical minimal s-t

cutset, given that the maximum flow exceeds x at

time *.

...............-..................................... .... ........... .
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Relatively, little work has appeared on the numerical

evaluation of the measures (2) through (5). Somers (1982)

describes a procedure for computing (2) exactly for the cases of

one and two arcs with random capacities and n-1 and n-2 arcs with

fixed capacities, respectively, and notes that the computation

time for n randomly capacitated arcs grows exponentially with n.

Assuming independent exponentially distributed arc capacities in

a planar network, Kulkarni and Adlakha (1985) show how to compute

(2) exactly in 0( lVI • JEJ )time, using the max-flow algorithm of

Itai and Shiloach (1979).

Frank and Frisch (1971) provide a comprehensive discussion

of the randomly capacitated maximum flow problem with regard to

the computation of (2). Their discussion, which is principally in

terms of normally distributed arc capacities, gives lower and

upper bounds. Because of the difficulty of computation for even

moderately sized networks, they suggest a crude Monte Carlo

sampling plan to estimate (2).

The present paper describes a Monte Carlo sampling plan for

estimating (2) that employs an easily computed upper bound to

gain its computational advantage. In particular, this bound
I3

enables one to modify sampling in a way that reduces the sampling

variation inherent in each trial, thereby reducing the sample

size required to achieve a specified accuracy of estimate when

compared to crude Monte Carlo sampling. Although the paper

concentrates exclusively on (2), one should note that repeated

,



application of the proposed sampling plan for a selected set of

times i would also allow estimation of (3).

To set the stage for the proposed method, Section 1

describes a prototypical crude Monte Carlo sampling plan that

remains the basis for comparison throughout the paper Section 2

presents an improved sampling plan that exploits a priori

information on the upper bound to improve statistical efficiency.

The plan includes point and interval estimation. Section 3

describes a particular model of component capacity deterioration

in a network that enables one to regard capacities on individul

arcs as being multinormally distributed. This model greatly

facilitates the use of the proposed sampling plan. The section

also describes how to assess the appropriateness of the normal

model with regard to lower and upper bounds on capacity.

Section 4 presents a procedure to guide the choice of when

to stop sampling and Section 5 describes inferential methods for

assessing the extent of variance reduction. An example in

Section 6 illustrates the proposed procedures in detail and

Section 7 summarizes the essential steps in Sections 2 through 5

to implement the proposed sampling plan.

1 . Crude Monte Carlo Sampling

Procedure MFCRUDE describes the steps to be performed in

carryi ng out a crude Monte Carlo sampling plan designed to

Pstjrnte {L(x, ) x X} from data on K independent trials or
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replications. Here LK(xT) is an unbiased estimate of

L(xi) with

var LK (x,t) L(x, ) [I-L(x,t)]/K.

Moreover, V(LK(X,l)) in step III is an unbiased estimator of

var LK(X,t). Note that in step II sampling usually takes 0(n)

time per replication. However, the dominant time consumer is the

determination of maximum flow; for example, taking 0( Ivi log IVI

time per replication for a planar network (Itai and Shiloach

1979).

With regard to computing the cell number j in step II,

choosing the flow set as x = a+Si a, 8>0 i=1 , . . ,r offers

an advantage. Then for cont in uous A(t ) , one has

Lmin{r,[A(t)-a]+/B}_ so that the time to determine j is

constant and independent of r. If the set of flows X does not

admit the representation xi = a+Bi, it always will be beneficial

to augment the set so that it does.

Procedure MFCRUDE representls a baseline sampling experiment

against which one needs to compare any alternative candidate

sampling experiment with regard to the presumably smaller

resulting variances of interest and the usually larger computing

time required per replication to realize these variances.

Section 2 describes one such alternative sampling plan based on

an easily derivable upper bound on {L(x,rc)i.I

j

.N"
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Procedure MFCRUDE

Purpose: To estimate (2) for specified time x and selected flow

levels X xo=O<x1<...<Xr}..

Input: Network G = (V,E={ I ... ,n},s,t), time T, joint

distribution of capacities, flow set X and number of

independent replications K.

Output: K (x,), V(K (x ,)); xeX} as estimators of

{L(x,i), varLK(x,r); xeXE , and {AS(x) xeXj as an

available input to continued sampling. --

* Method:

I. Initialization

Set AS(x i ) = 0 i=O,1....r.

II. Sampling Experiment

On each of K independent replications: sample the

capacities BI ()... ,Bn( ) from the joint distribution;

determine the maximum flow A (); compute j = max[i:

xi<A(t) i=O,1 ,...,n]; AS(xj) = AS(xj) + 1.

III. Computation of Summary Statistics

1 r
L S(x.,) -=..K .

LK Xi As( X

KK

V(L K (x., r)) L LK (x 1 ,)[1-L K (x. r /(-

End of Procedure

-- 7i

. ......
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2. Exploiting Bounds

The plan to be described here concentrates sampling in a

region of the sample space of B(), ,Bn() where each

collected sample outcome contains considerably more information

than in the crude Monte Carlo case. Let

H(x,C,r) = {Z(C,t)>x} 4

so that (2) has the form

L(x,T) = pr[fn H(x,C,)]

= MXT) N(x,T)

where for r = r 1 (x,T) r r

M(x,t) =pr[ n H(x,C,t)I ln H(x,C,T)]
cer-r1  c r

and

N(x, T) pr[ r H(x,C t)] 
CEr1

Let

H1Cx,r) = H(x,Cc )
C Cr I

and suppose that N x, ) can be computed exactly. Then to

estimate L(x,T) one proceeds as follows:

On each of K independent rep 1 i c at ions sample .'7

B(T) = (B (c),...,B (T)) subject to the restriction H (xT);
1n 1

determine the maximum flow A(T); set @ = I (A(T)) where

I denotes the indicator function on the set A.
A
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Then

MKxr)=1 K k)
K Kk 1

where the superscript (k) denotes trial k, is an unbiased

estimator of M x, and .'.

L K (X,-) = N(X,-c) M K x , ) (6)

is an unbiased estimator of L(x,T) with

var L (x, ) = L(x, ) [N(x, ) - L(x,T)]/K. (7)
K'

Observe that

var L (x, i) . N(x,r)/4K

which can be a considerably tighter upper bound than that of 1/4K

f or var LK(Xr). More importantly, note that

var L (x , ) 1 - L(x,t)
K

la r LK X , T N (x , T) L (x ,T ) N x , ) "

indicating that to achieve

var LK (x,) var K (x,[)

1 2

the ratio KI/K 2  must be greater than or equal to I/N(x,T).

"0
2:":2

-'l
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The variance ratio in (8) is merely one measure of benefit. .

Let T and T denote the mean times required to perform one

replication with crude sampling and with the bound respectively.

Then T/T provides a second measure of performance and is usually

less than unity. As a single measure of merit the quantity

T vat LK (X,)
R(x,,) = - v (9)"" 

T var L K(x,[)

is commonly used in the Monte Carlo literature. This quantity,

called the variance reduction ratio, measures the amount of time

one would have to run the crude Monte Carlo experiment to achieve

the same variance as one would achieve using the proposed method

in one unit of time. Clearly R(x,t)>1 indicates that the

proposed method is preferred. Section 5 describes inferential

methods of estimating (9) from sample data at the end of an

experiment.

Choosing HI(x,T)

In selecting H1 (x,T) one needs to consider several issues.

First, N(x, ) must be computable. If arc capacities are

statistically independent and the cutsets in r1 (x, ) are

edge-disjoint, then

N(x, T) 1 1 pr[H(x,C,T)J, (10)
c r (x, .)

I

...
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whose computation takes 0(1 r 1 (x,t) I) time, once the

pr[H(x,Cr)] are determined.

To estimate L(xT) for just one flow value x, one may want -.4

r ". - .-

to choose r1 (x,T) to be the set of edge-disjoint minimal s-t

cutsets that minimizes (10). Unfortunately, the determination of

this r1 (x,t) is NP-complete. Moreover, since one customarily

estimates the complementary distribution function for several

flow values, it becomes necessary on each replication to insure

that H1 (x,t) holds for each x in X. If r1 (x,T) contains more

than one cutset, this can entail considerable resampling thereby

increasing computation time substantially. To reduce this

sampling frequency, we describe an alternative method.

Let r* denote a set of edge-disjoint minimal s-t cutsets,

let X = Xo=O<x 1 <. . .<Xrl denote the set of flows of interest and

define

i-i -- -

P.(Dc ) = pr[H(xi,D,t)f[ n l H(x.,C(xj,),T)]} Dcr*
0j=1 J

where

C(xi,t) = IC: cr* I Pi(CT) I P (D,T) Dcr*}. (11)

Here C(xi, ) minimizes PI(D, ) at flow xi  Now redefine

N(xi,-) -pr[ n H(x.,C(x ,),T)] (12)
j= l

which is again an upper bound on L(xi,T). While it is true that

.."
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N x.,t) . pr[ r) H(x. ,C, )], (13)

using jC(xi t) Ii .<rI, as defined in (11), makes resampling

necessary for at most one constraint H(xiC(xii),T) at step i,

in contrast to the potential sampling for the Ir*I constraints

*-f H(x ,CT) that are active on each step if one chooses to use

all cutsets in r. Note that one can determine a set of

edge-disjoint cutsets r* = IC 1 .... Cj} in O(n) time where J is

the size of smallest minimal s-t path. Procedure A shows how to

determine {C(xi,t) li~rl given r*"

Procedure MFBOUNDS shows how to perform K independent

replications to estimate (2) for {C(xir), N(xit)I as determined

in Procedure A. Note that at step i and i constraints -

nl H(x.,C(x.,t),-) are in force, although only meeting
j =1 J

H(xi,C(xi,-), ) may induce resampling. Since the probability of

resampling at step i>2 is

pr[ Z(C (xi -t)t)>x]
1 pr[Z(C(xi,l),t)>x )

where

j(i) =max fk: C(xkT) =C(x.,r)j if C(xi. T)EJC(xk, ) 1-<k<i-
1 .k< i

=0 otherwise,

. . .. . . . .... ,. .... . . . . .. . ..



the mean number of sampled capacities on each trial in Procedure

MFBOUND is

rpr[Z(C(x. ,1) ,T)>x1 3

n ~ ~ ~ p + ~ ~.,) 1-p[(C x. ,t),>x.]
i =2 1 i ji)

and an upper bound on the mean number of' maximum flow

determinations is

r = pr[Z(C(x t.) ,t)>x

By contra st, Procedure MFCRUDE samples n capacities and

determines maximum flow just once per replication. Therefore,

Procedure MFBOUNDS clearly takes more time per replication than

Procedure MFCRUDE does.
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Procedure A"-

Purpose: To compute an upper bound for {pr[A(i)>x] xcXJ.

* Input: Edge-disjoint minimal s-t cutsets r* = 1C1 ,...,Cj},

flow set X = IxO=O<x 1 <. . .<Xr}, time T and

I{pr[EH x iCj, ] 1<i<.r, 1<.Zj.< } -I

Output: IC(xi,t), N(xi,t) 1 i r}.

Method: Find the smallest m that minimizes pr[H(xi,Cmr)] for

all 1m J; set C(x 1 ,t) = Cm; set N(x 1,T) =

~~~pr[H(x I ,C(x , ) ,-t]; i=1 .

Until i=r:

A. Find the smallest m that minimizes

prIH(x i+,Cm T)n[ ln H(XjC(x.,-),T)]} for all l1mSJ;
j=1

set C(xi) = Cm;
i+11

set N(x t ) = N(xi,T) pr[H(x ,C(xi ,-),t)].
i+1 1 i+11 i+11

B. If Cm E {C(xjt) 1j~i}: determine the largest j

6I such that C(xj,T) = Cm; set

N(xi+I,T) = N(xi+l,1 )/pr[H(xjC(xj,t) ,)] .

C. i=i+1

End of procedure

. .~ . .. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

A. . . ~ t...S ttt ..~•s.- a.
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Procedure MFBOUNDS V-

Purpose: To estimate (2) for specified time I and selected4

-'flow levels X I XO=O~x1<. .. xr I

I Inp u t Network G =(V,E = 1,... ,nj, s ,t t im e -r jo in t

d is tr ib u t ion o f c ap ac it ies, fl1o w s et X,

C(x,T) ,N(x,T) as determined in Procedure A; xcX1

and number of independent replications K.

*Output: {L. Cx,[), V(L (x,rt)); xCX1 as estimators o f (L x ,t,
K ' ' K

var L (x,T); xEX1 and IS(x) xX Xx*x 1. as an available
K 0

input to continued sampling.

Method:

I. Initialization

Set C( xO , -r C(x1,,); set 5(x1) 0 1 :i~r .

II. Sampling Experiment

For each of K independent replications do:

0 A. Sample capacities 1Bi(tr) 1.<in1 from the joint distribu-

tion subject to the restriction H(x1 ,C(xQ,T),Tr).

B. Compute maximum flow A(T).

C C. Set Z =Z(T,C(X 0 3 T)).

D . For i=1,..r do:

1. 6 = 0.

2. If A(T)>xi, 6 1 .
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3.Otherwise:

a. If C(x. ,t) *CCx Et), set Z Z(,=iT)
1 i-1

b. If Z x.i resample lB.(T) .JEC(xis-E)1 subject to

H(x.,C(x~t,) set Z B B.T) compute

maximum flow A(T); if A(T)>x. iS 1.

4. S(x. S(x) +

III. Compute summary statistics

L (x.,t) =N(x.,T) S(x.)/K
K ,

1 Sj Sr.

2
V(L (x.i)) =N (x.,t1) [S(x.)/K] E1-S(x.)/K]/CK-1).

K ,j

End of Procedure

Confidence Intervals

While variances give an indication of statistical accuracy

some studies call for the construction of confidence intervals

f or estimates of interest at a specified level of significance

a O~<1. Let L =L(x,tc), N =N(x,tr) and S =S(x) for xcX

where S(-) is given in Procedure MFBOUNDS. Since S(x) has the

binomial distribution with parameters K and L(x i )/N~x,T) i t is

in principle possible to derive exact confidence intervals for

K.L(x,T) . However, as pointed out in detail in Fishman (198J4), the
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numerical evaluation of the interval becomes increasingly

difficult as K increases. Here we describe two alternatives.

For binomial samples, the results in Okamoto (1958) enable

one to show that (Nip, NW 2 ) covers L with probability exceeding a

where WI < 2 are the solutions of the equation

(K-S)In(I-W)+S lnW ln[(I-a)/2]+(K-S)ln(I-S/K)+S ln(S/K). (14a)

For a > .9 these bounds are considerably tighter than those that

Chebyshev's inequality produces. Also, the interval

NS Na 2 /2 _ /N[B2 4 S(K-S)/K]
(1 4 b

K + a2

asymptotically (K-) covers L with probability a and

8 y: (2T) -  e-x/2 dx = (1+a)2}. (15)

Employing the tighter normal result requires care. If

L(x )/N(x, ) is close to zero or, unity then convergence to

normality is slow and the normal interval can be misleading. One

indicator of the extent of convergence is the skewness measure

E[L K(X,T)-L(x,T)] N(X,T)-2L(x,T)
K IV, 16)
[var L K(x, )] 3/2 {KL(x, t)[N(x,t)-L(x,r) j -

A skewness close to zero supports the contention of normality.

Section 6 uses a sample value for 0 K to make this assessment.

, * ,... 9 - ,-9
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Occasionally it may be of interest to compute simultaneous

confidence intervals for, say, uL(x,i) xeX*} where X* capaiy

finite set of flows. Then the X*I Okamoto confidence intervals

that result from (14a) hold simultaneously with probability of at

least a when -o (r a)/ X*I replaces i in (1Ta). Also,

confidence intervals based on normality (n4b) hold asymptotically

when this same substitution for v is made in (15). These

simultaneous interval results follow from a Bonferroni inequality.. .,

See Miller (1981, p. 8). th e a o L.

3. Characterizing Deterioration Through Time .h.ai

At least two distinct characterizations exist for ",

multi-state systems with random capacities for which maximum flow -

is a performance measure. One representation views system .i-[-

components as experiencing successive moderate-to-small capacity.--.

reductions of random magnitude at a sequence of random points in-,,

time. The second views the components as either operating at >- ''

full capacity or as failed at random points in time. The present->.

paper focuses on the first characterization and adopts a -

formulation from the theory of cumulative processes, as described

in Smith (1955), to facilitate the estimation of IL(x,t)}. i ,

Let tij denote the time at which the i th capacity -. q

reduction occurs to component j so that (i < kj k~i+1, i+2 .. 2.--''

Assume that {fij-ri tj .j-O; i=1,2,.... } j=1.....q form q ". .[-

independent stationary renewal processes with'..-.

*, -- -"- " -- .- . t,- - ". . .. ._. ._.-_'.*-. 1....."_*_ ., - ..- - "- " ' " " •." " ", - " -- - " " " ." -,"- ,- -. • . " .- " ," - •-. -• - " ."



and i =1,2,. ... j1..q

var CT -T = <
i j i-1,,j 3

We conceive of ijj as the time of the ith degradation for arc i

in arc set Ejwhere

Ejn Ek 0 j jk

E =E+ .+E
1 q

Def ine

=i reduction in capacity on arc j at

time T ij

and for each j t a ke A 1 j A 2 j. . to be independent and

identically distributed Ci.i.d.) random variables with

EAij = Yj <

var Aiu = X

c or r(A j ,Aik) =j jk if j cE k

=0 otherwise

and

'3 i i-1,k k

=0 otherwise.

Let

J( TEk) =number of degradation times in E 0, 1 in set Ek

*so that at time T the accumulated degradation on arc j in set

Ek is
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= A. if J(tcE )>0
i= k .J

= 0 otherwise

and the capacity of arc j is

Bl B (0) - Yj(t).

As T ®, one has (Smith 1955) for arcs j,mcEk

Yj(r) T . + 0(T),

where o(T) denotes a function h(T) such that lim h(t)/T = 0,

lj = j/a k  :1i::[

var Y.(t) T ..T + 0(T),

3 ~ 33

E. [A. 2w (Y /a 8 A I aY /a ]/2
( j k k k2 +...k

and

coy [Y.(T)Y m('T)3 =jM a.t (T) if JEE m

= 0 otherwise

where

C.. [p. (A-A W Y ("Y X ))a + 8 Y /a 2]/aij jm j m - j k k m mk m k kYj "kk k

Moreover, as -C + the joint distribution of

I" .°.'
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I[B ( - Bj(O) + jt]I/T 4  jsE} converges to the multinormal

distribution with mean vector 0 and covariance matrix

E = i j j. Then, for large t {Z(T,C) CEr} are approximately

normal with

EZ(t,C) = [Bj(0) - T

and C ,D F.

coy [Z(T,C), Z(t,D)] = t a.
i ,jcCnD 

-

When this formulation in terms of cumulative processes

applies, it offers many conveniences for Monte Carlo sampling.

Observe that, because of the asymptotic normality, the sampling

distribution of BI(T),...,Bn(t) requires knowledge only of the

initial capacities Bi (0) 1.i:n}, the means 1 1 i i.nI and

the covariances {aij 1<i,j:n}. In particular, note that the

covariances {oij i *j } completely characterize statistical

dependence in capacity changes on different arcs. It is entirely

plausible that one can derive suitable empirical estimates of

these quantities from time series or cross-sectional data for

multi-state systems encountered in practice. Moreover, sampling

iBj (r) jeCi subject to H(x,C,t) is easily realized using the

conditional properties of the normal distribution and Algorithm

RSNB in Cheng (1981,pp.314-315), which takes O(1 C 1) time.

Two restrictions need to be kept in mind when assessing the

suitability of this probabilistic model. They are

• - -- -S+ .. + . . -• .< -' - ' i +-• + . . . + • i . .
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max [B.(T) B.(O)] <  0 (18)

and

min B.(- ) Z 0, (19)
JE

j E E ;[ i 1

which reality demands with probability one but to which normal

theory assigns some positive probability less than unity. In the

case of statistically independent capacities this probability is

I - 0(T) where

n B__(0) _ Al
0 1 n O a .r (20)

j = ( ij ")i 2)]-

and 0(,) denotes the standard normal distribution function.

Clearly 1 - E(r) should be small before one accepts the

suitability of the normal approximation. As an additional

precaut ion when using the normal model one can use

max{O, min[Bj(O), Bj( )]} in place of Bj( ) for the capacity

of arc j at time T in Procedure MFBOUNDS.

4. Credibility Analysis

There remains the question of how large K should be in

order to ensure the level of statistical accuracy required for a

particular study. As examples, one may want to estimate L(x,i)

subject to the absolute error criterion

1 (x,E) K (x,t)-L(x,r l) i j E >0 (21)

or the relative error criterion

~-...+.-.
* . . . . -. .

- - .o+ .- - ,- - - °'. , + ,°-o'. -• + o, . --, - * . . • . .° . •- ..-- • -"
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I x a W L K(X )-L(x,) j. L(x,'t)} O<,<1 (22) ""

Some studies may demand that the least criterion

I (x ,W) I (X,E) UI 2 (x, ) (23)

be satisfied and others may demand that both criteria

1= 41(x , ) n 1 2 (xW) (24)

be met. Here 1 3 (x,E,w) is the least stringent and I4(x,Eu) is

0 the most stringent.

Since S(x) in Procedure MFBOUNDS has the binomial 

distribution with parameters K and

satisfying 1i(x,ew) I 1 (x, ) is equivalent to requiring that

1(x E[ ( *(x) x)], where

l,(X) = [S(x)/K-c/N(x,T)]+"

and (25)

p (x) = -[I-S(x)/K-t:/N(x,i )] +

and satisfying 1 2 (x,E,W) = 1 2 (x,w) is equivalent to requiring

that P(x)E[ 2 (x),p 2 (x)] where

12,(x) = S(x)/K(I+w)

and (26)

0 ;.
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(x ) = 1-[1-S(x)/K(1-)]

Moreover, satisfying 13 (x,c,w) implies p(x)e[u 3*(x),1I 3 (x)], where

1 3,(x) =min[p ,(X),v ,x

3 2

and (27)

P3(x) max[1 l(x), 2 Cx)],
3 ,, 2.

and satisfying I4(x,ew) implies P(x)C[4*(X),4(x)] where

(x) max[V 1,(x), 2 ,(x)]'

and (28)

p4(x) = min[ i(x),p2(x)] • ".

That is, for S=S(x)

I-pr[Ij(x , ,)] = prhI(x)I.jl(x),VIj(x)]"
(29)

=1- F K ,pjx))+ FS(K , ji x) I j 4 ,

F being the binomial distribution function.

For sets of flows X = i< . . .<xr, absolute errors

1 .... ,Er} and relative errors Iw1,...,wr}, t

r-pr[ n I (x € ( )] S Aj :21

1=1

• .. ".,.,, ,.. .. . , . .. ."-".-. . . . ..,' .. . . . . .... . ..•-.-.-.-. ..... - .- .. . ...-.... . .-. _. .. _.. . . - , , __._ -
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Aj 1 -~l [ F s(K'uj*(xi)I+Fs(K'uj xL)) S~k:4, (30) "''''2'2

the upper bound following again from a Bonferroni inequality

(Tong 1980, p.143).

To guide the choice of sample size, one can increase K in

steps, compute the bound corresponding to the chosen criterion at " "

the end of each step and use the sequence of such values as a

measure of the credibility of having satisfied the criterion. To

ensure some progress in the value of the bound, increments in K

should be relative. Doubling K at each step is a reasonable

choice. IMSL (1982) and SAS (1982) provide routines for

evaluating the binomial distribution with high accuracy. Note

that in contrast to the discussion on confidence intervals in

Section 3, the development here relies on the exact binomial

distribution.

o5. Estimating Variance Reduction

As Section 3 notes, (9) indicates the benefits of variance

reduction. One can estimate this quantity by

R(x,r-) Q(x ) (26)

where

Q(x,T) = 1 -LK(x,t)]/[N(x )-K(X ) ],

K K.. . . . . . . .... . .... .. . . . .
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T and T being the sample mean times per replication for Procedures -. "=

MFCRUDE and MFBOUNDS respectively. Although T/T generally is a

relatively stable quantity, Q(x,t) may not be, especially when _.-

L(x,i) is close to N(x,T). Therefore, relying solely on (26)

as an indicator of variance reduction can be misleading. To

resolve this problem, one can compute a confidence interval for

R(x,t) in (9).

Let N = N(x,i), L = ,K(X, ) and R = R(x,T), so that
SK

Y 1 I-E - R(N-L)

has mean zero and

var Y = (NR-1)(1-N)/K

Then Chebyshev's inequality gives

p r . . .. > ':

"(NR-1)(1-N)/K 
2  1l a)' /

+ yielding a 100 x a confidence interval

(1-L)(N-L) + 82 N(1-N)/2K ± B(1-N)[(N-L)L/K + 2N 2 /4K 2 ]'/2-i N[2 (27)

(N-L)2

with a I/(1-a)/2. If warranted, a tighter normal interval with 8

computed as in (15) can be used.

* 6. Example

Figure 1 shows a directed network for which we wish to

"-" estimate {L(x,T)j for t = 500 and X = {800 + 1001 i=1 .... 12j.

* - - - - - -.--
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Table 1 gives the corresponding arc parameters. Since

Insert Fig. 1 and Tables 1, 2 and 3 about here.

0(500) = .01 72 in (20) the normal model is reasonable. The

selected set of edge-disjoint cutsets is CI = (1 , 2, 3,

2 = {114,24,25}, and 03 = {5,6,9,10,12}. Table 2 shows {C(xi,t) ,

N(xi,t) 1<i<rj. Table 3 shows the results of using Procedure

MFBOUNDS for K = 65536 independent trials. In addition to the

favorable variance reduction for all x, note the wide confidence

intervals for R(x,T) for 900 < x < 1400, reflecting the

closeness of the upper bound N(x,i) to L(x,T). Also, note the

substantial variance reduction for x a 1800 and the fact that

variance reduction is not monotone in x.

Figure 2 provides an understanding of this nonmonotone

behavior. These cutsets act as the principal restrictions on

Insert Fig. 2 about here.

capacity when looking at flows in the interval [0, 2000]. For

- small x, CI is the dominant restriction. As x increases CI and

C 02 become equally dominant and, as x continues to increase, C2

becomes the restrictive cutset. The point of lowest variance

reduction apparently occurs where C 1  and C2 are approximately

equally dominant.

........................* -*... . . .. ... .. ...- - -
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Table 4 gives individual Okamoto and normal .95 confidence

intervals for {L(xi,) 1Sir} along with the sample skewness

based on (16). Although both sets of intervals give at least two

digit accuracy, the sample skewness encourages one to rely more

on the Okamoto bounds for 900 - x < 1300.

Insert Tables 4 and 5 about here.

To demonstrate the credibility analysis of Section 4 , Table

5 lists the bounds for the four criteria described there for

E1  = c = .01 and wi  = w = .1 1.<i:r for Procedure MFBOUNDS and for

crude Monte Carlo sampling in Procedure MFCRUDE. Most notable is

the relative error criterion which shows that a bound less than

.1 is achieved with high certainty at K = 4096 in contrast to

Procedure MFCRUDE which does not achieve this bound with moderate

assurance even for K = 1048576. That is, MFCRUDE requires a

sample size at least 1024 times larger than that for MFCRUDE to

achieve the same relative error criterion.

7. Essential Steps for Implementation

Here we list in appropriate order the essential steps needed

to implement the proposals in this paper:

1. Select the time x of interest.

2. Select the flow set X - (x0 =0<x 1 <.. .<Xr}. -7
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• *J • ,'..

3. Compute 0(-) in (20) to check the appropriatenesss of

the normal model. If inappropriate, stop.

4. Select an error criterion and specify the corresponding

{1c1-.. -cr1 and 1w,.. pwr) (Section 4).

5. Determine a set of edge-disjoint cutsets

r* =C , ... ,CjI•....

6. For each xcX, determine C(x,t) and N(x.T) using

Procedure A.

7. Use Procedure MFBOUNDS for the sampling experiment.

8. If the experiment is to be performed in blocks of

K,, KI + K 2 , KI + K2 + K(3... replications, then after ,

each block compute the credibility probability bound

for the selected error criterion. Suggested increments

are Ki = K1  21-1 for i=1,2, ...

9. After completion of the experiment compute the sample

skewness in (16) and a confidence interval for each

L(x, ) xcX xex 0*
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Table 1

Capacity Parameters for
Network in Figure 1

arc B B(0) I0

1 868.33 1.20 14.40
2 2532.62 3.50 122.50 "
3 1736.66 2.40 57.60
4 3473. 31 4.80 230.00

5 3618.03 5.00 250.00
6 723.61 1.00 10.00
7 3256.23 4.50 202.50
8 2170.82 3.00 90.00
9 1736.66 2.40 57.60

1 0 723.61 1 .00 10.00
11 868. 33 1 .20 14. 40
12 3256.23 4.50 202.50
13 1302.49 1.80 32.40
14 1809.02 2.50 6.25
15 863. 33 1.20 14. 40
16 2604.98 3.60 129.60
1 7 3618.03 5.00 250.00
1 8 2894. 43 4.00 1 60.00
19 1085.41 1 .50 22.50
20 1447.21 2.00 4.00
21 3256.23 4.50 202.50
22 2532.62 3.50 122.50
23 1809.02 2.50 62.50
24 1736.66 2. 40 57.60
25 2170.82 3.00 9.00

........................................................----..-.-.
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Table 2 ~

t V
Relevant Disjoint Cutsets

(' 500)

i xi C(Xi,t[) N(xi,tI)

1 900 11,2, 31 .98627

2 1000 .97024

3 1 100 .941 05

4 1200 .89306

5 1 300 .82181

6 1 400 .72628

7 1 500 .61062

8 1 600 114, 20, 251 .47865

9 1 700 f{1 ,2, 31 .28163

1 0 1 800 114,20,251 .03775

1 1 1 900 .0041 4

12 2000 .00018

t IC(Xi,T)J is computed as in (11). IN(Xi,T)l is computed as in

(12) .
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Table 3

Experimental Results-

(T=500, K=65536, T/T = .335)

.95 confidence
upper estimated interval

flow bound estimate variance for R(x,T)

x N(x,T) K(x,[) V(LK(x, )) R(x,T) R(x,T) lower upper
T.

900 .9863 .9861 .3170 x 10- 8 66.16 22.21 21.98 203.43

1000 .9702 .9696 .9856 x 10- 8 45.68 15.33 24.22 86.99

1100 .9410 .9399 .1668 x 10- 7  51.69 17.35 32.01 83.88

1200 .8931 .8906 .3370 x 10-7 44.12 14.81 32.02 60.96

1300 .8218 .8172 .5754 x 10- 7  39.61 13.30 31.63 49.70

1400 .7263 .7177 .9358 x 10- 7  33.04 11.09 28.30 38.60

1500 .6106 .5780 .2879 x 10- 6  12.93 4.34 12.08 13.84

1600 .4787 .3670 .6252 x 10- 6  5.67 1.90 5.52 5.82

1700 .2816 .1392 .3025 10- 6 6.04 2.03 5.96 6.13

1800 .3775 x 10- 1 .2411 x 10-1 .5016 , 10-8 71.60 24.03 69.98 73.26

1900 .41)42 ,10-2 .1626 x1 2  .6243 x 10-10 397.02 133.27 391.56 402.69

2000 .1788 , io3 .3900 x 10- 4  .8321 . 10-13 7151.79 2400.65 7087.20 7219.18

T and were obtained from runs with MFCRUDE and MFBOUNDS respectively.

S.- ..- ..- ~ . . . . . . . . . . . --.
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Table 5

rI

Credibility Analysis for 1-pr[ r) l.(x.,E,w)] I~j 4

(E=.01, W=.1)

A1  A A3 A

K IMEBOUNDS MFCRUDE MFBOUNDS MFCRUDE MF'BOUNDS MFCRUDE MFBOUNDS MFCRUDE

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

32

611

* 128

256

512 .0015 .6110

1024 .1704 .1149 .0000 .2338 .2839

*20143 .0259 .0168 .0650 .0427.4

4096 .0016 .7335 .0009 .0087 .0025

81 -
812 .0000 .2018 .0000 .0003 .0000

16384 .0229 .0000

32768 .0005

65536 .0000

* 131072 .7977 .7977

262144 .7282 .7282

524288 .5215 .5215

1048576 .. 3521 .3521
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